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Convergence properties of the variational cluster approach with respect to the variational parameter space,
cluster size, and boundary conditions of the reference system are investigated and discussed for bosonic
many-body systems. Specifically, the variational cluster approach is applied to the one-dimensional Bose-
Hubbard model, which exhibits a quantum phase transition from Mott to superfluid phase. In order to bench-
mark the variational cluster approach, results for the phase boundary delimiting the first Mott lobe are com-
pared with essentially exact density matrix renormalization group data. Furthermore, static quantities, such as
the ground state energy and the one-particle density matrix are compared with high-order strong coupling
perturbation theory results. For reference systems with open boundary conditions the variational parameter
space is extended by an additional variational parameter which allows for a more uniform particle density on
the reference system and thus drastically improves the results. It turns out that the variational cluster approach
yields accurate results with relatively low-computational effort for both the phase boundary as well as the static
properties of the one-dimensional Bose-Hubbard model, even at the tip of the first Mott lobe where correlation

effects are most pronounced.
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I. INTRODUCTION

Seminal experiments on ultracold gases of atoms trapped
in optical lattices' have lately turned the spotlight of scien-
tific research interest on the Bose-Hubbard (BH) model* and
its variants. The BH model exhibits a quantum phase transi-
tion from localized Mott phase to delocalized superfluid
phase. The Mott phase is characterized by integer particle
density, a gap in the single-particle spectral function and zero
compressibility.* The regions in the phase diagram where the
ground state of the BH model is in a Mott state are termed
Mott lobes. The evaluation of the boundaries delimiting the
Mott phase and other physical quantities is very demanding
for the one-dimensional (1D) BH model as correlation ef-
fects are most important in the low-dimensional case. This is
reflected in the special shape of the Mott lobes. Particularly,
the lobes are point shaped and a reentrance behavior can be
observed>® in contrast to the mean field results.*?-1?

In the present paper, we benchmark the variational cluster
approach!® (VCA) using the one-dimensional BH model.
VCA is based on the self-energy functional approach!'*!3 and
is a variational extension of the cluster perturbation
theory'®!” (CPT), where the physical system is decomposed
into clusters and the intercluster hopping is treated perturba-
tively. It is crucial to investigate the convergence properties
of VCA in dependence of the variational parameter space,
the size of the clusters and the boundary conditions used for
the cluster Hamiltonian. The motivation for this research has
been the increasing interest in strongly correlated bosonic
systems such as ultracold gases of atoms trapped in optical
lattices'~ and light-matter systems.'3-2° Lately, cluster meth-
ods have been benchmarked for fermionic systems in Ref.
21, where the authors used the one-dimensional fermionic
Hubbard-Model,?> which can be solved exactly by means of
the Bethe ansatz,2 in order to test the achievements of VCA.
However, it remains an open question how VCA performs in
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the case of bosonic systems. Unfortunately, an exact solution
of the one-dimensional BH model does not exist, as each
lattice site can be occupied by infinitely many bosonic par-
ticles. Yet essentially exact density matrix renormalization
group (DMRG) results for the phase boundary delimiting the
first Mott lobe are available,” and static properties, such as
the ground-state energy and the one-particle density matrix,
have been evaluated using strong-coupling perturbation
theory of high order.>*? In the present paper we discuss the
convergence properties of VCA for these physical quantities.

The outline of this paper is as follows. In Sec. II, the BH
model is introduced. Sec. III describes the most important
aspects of VCA. In this section, the ordinary variational pa-
rameter space of the BH model used for cluster Hamiltonians
with open boundary conditions is extended by an additional
variational parameter, which allows for a better distributed
particle density within the cluster and therefore drastically
improves the results. The convergence properties of VCA for
the phase boundary of the first Mott lobe are investigated in
Sec. IV by comparing the VCA results for distinct sets of
variational parameters and cluster sizes with DMRG data
from Ref. 5. Additionally, single-particle spectral functions
and densities of states are evaluated and their dependence on
the variational parameter space is discussed. In Sec. V the
ground state energy and the one-particle density matrix are
calculated and compared with strong coupling results of high
order from Ref. 24. Finally, Sec. VI concludes and summa-
rizes our findings.

II. BOSE-HUBBARD MODEL
The BH Hamiltonian* is given by

A U A~
H==12 blb;+— 2 (i 1) = uN,,, (1)
(i) 2%
where b and b; are bosonic creation and annihilation opera-
tors at lattice site 7, ¢ is the hopping strength between two
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adjacent sites, U is the on-site repulsion and w is the chemi-

cal potential, which controls the total particle number Np
=37,=3;b/b;. The first term in Eq. (1) is considered as a
sum over nearest neighbors j of site i. In the calculations and
the forthcoming discussions we use the on-site repulsion U
as unit of energy.

III. VARTIATIONAL CLUSTER APPROACH

The variational cluster approach has been originally pro-
posed for fermionic systems in Ref. 13 and has been ex-
tended to bosonic systems in Ref. 8. The main idea of VCA
is that the grand potential () is expressed as a functional of
the self-energy 2. At the stationary point of the self-energy
functional Q[ 2] Dyson’s equation for the Green’s function is
recovered. Unfortunately the functional Q2] cannot be
evaluated directly, as it contains the Legendre transform of
the Luttinger-Ward functional.'*?® However, the latter just
depends on the interaction part of the Hamiltonian and thus it
can be eliminated by comparing Q[>] with the functional

Q'[2] of a simpler, exactly solvable system H', which
shares the interaction part with the physical system H. The

system H' is referred to as reference system. With these con-
siderations one obtains for bosonic systems®

Q2]=Q[2]-TrIn[- (G, =3)]+ Tr In[- (G;' - 2)],
2)

where quantities with prime correspond to the reference sys-
tem and G is the noninteracting Green’s function. The sym-
bol Tr denotes both a summation over bosonic Matsubara
frequencies as well as a summation over site indices. In order
to be able to evaluate Q[X] the self-energy 3 is approxi-
mated by the self-energy of the reference system 3. In prac-
tice this means that the functional Q[2] becomes a function

of single-particle parameters X of the reference system H'
QX)=Q'(X) +TrIn[- G’ (x)] - Tr In[- G(x)].  (3)
The stationary condition on {2(X) now reads

IO(X) 0

Po (4)

The present formulation of VCA is not able to address the
superfluid phase. Therefore our discussions will be restricted
to Mott phase. A treatment of the superfluid phase would
require an extension of the theory using Nambu formalism.

In VCA the reference system H' is chosen to be a cluster
decomposition of the physical system, which means that the
total lattice of N sites is divided into decoupled clusters of
size L. Formally, the decomposition can be achieved by in-
troducing a superlattice, such that the physical lattice is ob-
tained when a cluster is attached to each site of the superlat-
tice. The reference system defined on one such cluster is
solved using the band Lanczos method.?”-?® It can be carried
out with open boundary conditions (obc), which is generally
done in literature,”! or with periodic boundary conditions
(pbc).!3 Both cases are investigated in the next section. The
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Green’s function of the physical system is obtained from the
relation

G (w) =G (w)-V, (5)
where
V=—(u-p)+(T-T, (6)

and G, G', and V are matrices in the site indices. In the latter
relation T and T’ are the hopping matrices of the physical
and reference system, respectively. In order to evaluate the
grand potential and the wave vector and frequency resolved
Green’s function G(k,w) of the physical system we apply
the bosonic Q-matrix formalism.? At first the bosonic
Q-matrix formalism yields the Green’s function of the physi-
cal system in a mixed representation, partly in real and partly

in reciprocal space, G(Kk,®). This representation is obtained
by a partial Fourier transform of Eq. (5) from superlattice

site indices to wave vectors k of the first Brillouin zone of

the superlattice. G(k, w) is still a matrix in cluster site indi-
ces. Second, we apply the Green’s function periodization
proposed in Ref. 16 in order to obtain the fully wave vector
dependent Green’s function G(k, ). From the Green’s func-
tion G(k, w) we are able to obtain the single-particle spectral
function

1
Ak,w) = - —Im Gk, w), (7)
T
the density of states

Nw) = 3 Ak (8)
k

and the one-particle density matrix
Cr;—r)) =(ala)). )

The one-particle density matrix is the Fourier transform of
the momentum distribution n(k), which can be evaluated in a
particularly accurate way by means of the Q-matrix
formalism.?’

The stationary point of {)(x) is determined numerically by
varying some or all of the single-particle parameters of the
reference system, see Eq. (4). In the case of the BH model
the single-particle parameters are the hopping strength ¢ and
the chemical potential u. Due to the breaking of translation
symmetry introduced by the cluster partition, the particle

density evaluated as a trace of G(k, w) differs at the bound-
ary of the cluster from the one inside the cluster. This is
unfavorable as the physical system, which has pbc, should
have a uniform particle density. However, for reference sys-
tems with obc this problem could be eased by adding another
degree of freedom to the variational parameter space, which
allows for a different on-site energy at the boundary of the
cluster with respect to its bulk. Fortunately, in VCA the ref-

erence system H' can be extended by any single-particle
terms, as these terms do not affect the Legendre transform of
the Luttinger-Ward functional. It should be emphasized that
due to this fact adding single-particle parameters to the varia-
tional parameter space does not affect the physical system.
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FIG. 1. (Color online) A system of two clusters. The intercluster
hopping T is treated perturbatively.

However, additional, physically motivated variational param-
eters improve the approximation of the self-energy 2 and
therefore improved results for the grand potential of the
physical system and for other physical quantities are ob-
tained. Clearly, in the physical system the values of the pa-
rameters corresponding to the additionally introduced single-
particle terms are zero, whereas in the reference system the
values are determined by the stationary condition on the
grand potential. Due to these considerations, the physical
system is not changed when introducing a variable on-site
energy at the boundary of the cluster.

For the 1D BH model the boundary of the cluster consists
of the first and the last cluster site. After adding the addi-
tional boundary on-site energy the reference Hamiltonian of
cluster m is given by

A U’
Hyy==1' 2 bibg+ = 2 (1)
(a.B) a

— W D gt 8 (g + i), (10)

where &' is the additionally introduced variational parameter.
In order to retain the chemical potential at approximately the
same level as it would be without the &' variation the term
—%Ef:_zlﬁi is added to the Hamiltonian I:I,'n as well. In VCA
there is no need to justify the additional on-site energy in the
reference system, as this term is not included in the physical
system. However, it is important to physically motivate the
addition of variational parameters and, therefore, we show
below that the additional on-site energy can be deduced from
perturbation theory. Consider two clusters as visualized in
Fig. 1, where the intercluster hopping T from cluster m=1 to
cluster m=2 is treated perturbatively.
The two cluster system is described by the Hamiltonian

. (H T
A= ] (11)
7" Hj

The Schur decomposition of Eq. (11) yields
Hy o= Hy=T'H'T. (12)
All parameters of the adjacent cluster are treated on mean

field level and thus we set H | =(E). Next we have to calcu-

late 777, where f":bhbzl +b§1b1 .- The notation b,,, was
used, where m denotes the cluster index and « the site index
within the cluster. With that we have

A

T = (b3,b11.+ b 1ba)) (b hay + b b1)
= bzlblLlerLbZI + bTLbZIbzlblL

= 2b;1b21lebe1L + bzlbzl + biLblL
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=1y (20, + 1) + 7y,
=7y (2(ny) + 1) +(nyp). (13)

In the second step, we neglected the simultaneous hopping of
two particles from one cluster to the other and in the last step
we replaced the particle number operator of the adjacent
cluster by a mean field approximation. The constant energy
shift (n,;) can be ignored and therefore Eq. (12) leads to

2n ) +1 A an
Wﬂz] E112"' 5”121, (14)

where, in the second step, we replaced the fraction, which is
just an unknown constant, by §’. Assuming that the physical
system has pbc and reiterating the above described procedure
yields an extra term &'71,;. Thus we obtain in total

7! _
H2,es1_H2_

Hj o= Hy+ &' (ily) +1iyy). (15)

In this way, we physically justified the additional on-site en-
ergy at the boundary of the cluster. In summary, we consider
three possible variational parameters, namely the chemical
potential u, the hopping strength ¢ and the additional on-site
energy at the cluster boundary 6.

IV. SPECTRAL PROPERTIES

The first benchmark for VCA consists of a detailed inves-
tigation of the spectral properties of the one-dimensional BH
model. In particular, we investigate the convergence proper-
ties of VCA for the phase boundary delimiting the first Mott
lobe with respect to distinct sets of variational parameters,
cluster sizes, and boundary conditions of the reference sys-
tem. Moreover, we study and discuss the consequences of
different variational parameters and boundary conditions of
the reference system on the single-particle spectral functions
and densities of states.

In the calculations, we use the following combinations of
variational parameters X={u},{u,t},{x, 8 and {u,z,6}. It
should be pointed out that the parameters of the references
system are varied. Those of the physical system are not
modified. We always consider the chemical potential u as a
variational parameter, since it has been shown that the
chemical potential x4 must be varied in order to obtain the
correct particle density for the physical system.®3 In gen-
eral, CPT fails for bosonic systems, since the chemical po-
tential of the reference systems leads to erroneous densities
in both, the reference system and the physical system accom-
panied by unphysical results, such as complex quasiparticle
energies.

Within the first Mott lobe, the particle density n has to be
one. After determining the stationary point of the grand po-
tential ()(x) with respect to the single-particle parameters X
we always validate the particle density n, which is at 7=0
given by

n=eiS S ). (16)

N k )\, (k)<0

m

where \,,(K) are the poles of the Green’s function and a,,(k)
are their spectral weights. The phase boundaries for the first
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FIG. 2. (Color online) First Mott lobe of the 1D BH model
obtained for reference systems with obc and the variational param-
eter sets (a) X={u}, (b) x={u,1}, (c) x={u, S}, and (d) x={w,?, &}.
The gray shaded area plotted in all subfigures indicates DMRG
results obtained in Ref. 5.

Mott lobe are shown in Fig. 2 for reference systems with
obc, the variational parameter sets X={u},{w,},{u, 8}, and
{w,t, 8} and various cluster sizes L. The gray shaded area
shown in all four subfigures displays DMRG results obtained
from T. D. Kiihner ef al. in Ref. 5. Additional work on the
Mott to superfluid phase boundary can be found for instance
in Refs. 6-8 and references therein. It can be observed that
all sets of variational parameters yield reasonable results
apart from the X={u, 1} variation. The best result is achieved
using the set Xx={w,?, 8} as variational parameters. Particu-
larly, the width of the phase diagram is approximated very
well even at larger hopping strength 7, where correlation ef-
fects are most pronounced, and the slope of the lobe tip is
obtained correctly. At the point shaped lobe tip a
Berenzinskii-Kosterlitz-Thouless transition to a (quasi-long
range ordered) superfluid phase occurs.*>! The quality of
the calculated phase boundary can be quantified by y, the
mean deviation of the VCA results from the DMRG data
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_L V_ D
X=1 > Y -1

pi

; (17)

where ply and p? are corresponding phase boundary points
calculated by means of VCA and DMRG, respectively, and
M, is the number of phase boundary points, which contribute
to the sum. The quality y is stated in Table I for several sets
of variational parameters and cluster sizes. From that it can
be seen as well that for reference systems with obc the X
={u,t, 6} variation yields the best approximation for the
phase boundary, as compared with DMRG.

In conventional variational methods, such as Hartree
Fock, the “best” among a set of solutions (at given u and T)
is chosen according to the principle of minimum grand po-
tential. This criterion cannot be applied in our case, since
there is no such minimum principle in VCA. In addition,
when including an additional variational parameter such as J,
there is no reason why the grand potential ) should display
a saddle point at §=0 since () is not an even function of &.

The single-particle spectral function A(k,w) has been
evaluated for #=0.15 and w=0.35, which corresponds to a
point right in the middle of the first Mott lobe. It is shown in
Fig. 3 along with the corresponding density of states N(w)
for reference systems with obc and L=12 sites, and distinct
sets of variational parameters.

For the numerical evaluation we used an artificial broad-
ening 7=0.05. Close to the main gap at w—u=0 the spectral
functions obtained from the {u} and {w,?} variation are not
smooth but exhibit spurious gaps,® see Figs. 3(a) and 3(b).
However, as soon as the variation in & is considered the
spectral function becomes smooth, see Figs. 3(c) and 3(d).
This also manifests in the density of states. Interestingly, in
contrast to the results in one dimension, there are no visible
spurious gaps in the spectral functions of the two-
dimensional BH model when only the variation of the chemi-
cal potential x={u} is considered.?® This can be explained by
the fact that in two-dimensions most of the cluster sites are
actually boundary sites as well.

The {u,?} variation has an odd behavior, see Fig. 2(b).
Naively one would expect that the results should improve for
larger clusters and the more variational parameters are used.
However, this seems not to be valid for the variational pa-
rameter set X={u,}. Therefore, this case has to be studied in
more detail. An important aspect is, that the larger the cluster

TABLE 1. Quality x/1073 of the phase boundary for reference systems with obc and pbc shown in Figs.
2 and 7, respectively. The quality y is evaluated using Eq. (17). L is the number of cluster sites and u,7, & are

the variational parameters.

obc pbc
L © ot w0 st 0 e Mt
2 40.1 32.7 40 1 32.7 223 32.7
23.8 10.5 22.7 16.5 16.0 16.4
8 14.3 21.1 12.1 8.6 9.2 5.8
12 11.5 40.1 8.7 6.1 8.0 4.4
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FIG. 3. (Color online) Spectral function A(k,w) and density of
states N(w) for r=0.15, u=0.35, reference systems of L=12 sites
with obc and the following sets of variational parameters (a) X

={u}, (b) x={w.1}, (c) x={w, &}, and (d) x={u,1, 5}.

the better should be the approximation to the physical sys-
tem. Therefore, one would expect that the deviations of the

parameters of the reference system H' at the stationary point
{u',t',8'} from the parameters {u,t,5=0} of the physical
system H should decrease with increasing cluster size. At the
same time, one would also expect the VCA results to come
closer to the exact ones. The parameter deviations are shown
in Fig. 4 for various values of the hopping strength ¢ and in
Fig. 5 for t=0.2 as a function of the cluster size L. Please
notice that as a result of the properties of the Mott phase the
difference between u and u' is independent of the actual
value of u provided the values of u are restricted to the same
Mott lobe. For the variational parameters Xx={u}, {u, 8} and
{w,t, 8} the deviations decrease steadily with increasing clus-
ter size. The variational parameter J is somewhat an excep-
tion as the average value of & on the cluster is L,/ L, where
L, denotes the number of boundary sites of the cluster, i.e.,
L,=2 for one-dimensional lattices. Correspondingly, the
scaled value of 6 is plotted in Figs. 4 and 5. Clearly, the

PHYSICAL REVIEW B 81, 235122 (2010)

03 01 o0z o3 % 01 02 03
t t
(1) O (c.2)
0.1 < -0.02
7 =
X = _0.04
0.05| ©
-0.06
% o1 0z 03 o oi 0z 03
(d.1) 0.06, (d2) 0 (d.3)
0.04
o -0.02
. . 0.04 Sw o
L o = 0.
0.02 T oo ©
-0.06
% 01 02 03 % 01 o0z o3 % 01 o0z o3
t

t t

FIG. 4. (Color online) Difference between the parameters of the
reference system H' at the stationary point {u',’, '} and the pa-
rameters {u,7, =0} of the physical system H. The corresponding

variational parameter sets are (a.*) x={u}, (b.*¥) x={u,#}, (c.*¥) x
={w, 8}, and (d.x) x={u,1,5}.

results for the two-site cluster are the same for the {u} and
{u, &} variation, and for the {u,?} and {u,?, 8} variation, re-
spectively. Thus the deviations for that cluster size are not
shown in Figs. 4(c.*) and 4(d.*). In comparison to the devia-
tions for all other parameter sets the deviations for x={u,}
depicted in Fig. 4(b.*) show a completely different behavior.
In particular, they do not decrease with increasing cluster
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FIG. 5. (Color online) Difference between the parameters of the
reference system H' at the stationary point {u’,’,5'} and the pa-

rameters {u,7=0.2, =0} of the physical system Hin dependence of
the cluster size L. The corresponding variational parameter sets are

(@) x={u}, (b) x={u. 1}, (c) x={w, &}, and (d) x={u.1, 8}.
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FIG. 6. (Color online) Particle density n'(a), first row, and n(a), second row, for reference systems with obc and size (a) L=4, (b) L
=8 and (c) L=12. The parameters for the physical system are t=0.15 and w=0.35. The legend refers to the distinct sets of variational

parameters.

size and furthermore they cross each other. This behavior
suggests that the results might be incorrect.

The additionally introduced variational parameter & dras-
tically improves the results and has significant influence on
the convergence properties. We suggested above that & al-
lows for a more uniform distribution of the particle density
within the cluster. To demonstrate that this is indeed the case
we determine both the particle density n'(«) obtained from
the cluster Green’s function G’(w) evaluated at the station-
ary point of the grand potential as well as the particle density

n(a) obtained from the VCA Green’s function G(k, ) of the
physical system. The latter is given partly in real and partly
in reciprocal space. It is important to note that at this point

the Green’s function G(lz,w) has not yet been periodized,
and that the index « is a cluster site index. Thus, it ranges
from 1 to L. The particle density n(«) is evaluated by calcu-

lating the trace of the Green’s function G(K,w), which re-
duces at 7=0 to a sum over the residues of the Green’s
function corresponding to poles with negative energy and a

sum over the wave vectors k. The results for the particle
densities n’(a) and n(a), respectively, for reference systems
with obc and of different size are shown in Fig. 6. As one can
see from the figure, the particle distribution n’(«), first row,
becomes flatter when & is considered as variational param-
eter and the deviations from density one shrink with increas-
ing cluster size, i.e., from the left to the right panel. The only
exception is the x={u,r} variation, where deviations from
one increase for larger clusters. However, a uniform particle
density n(a) in the physical system is even more important.
In VCA the lattice of the physical system, which has pbc and
thus a uniform particle density, is decomposed into clusters
of size L. This breaks the translational invariance of the
physical system and hence a periodization prescription has to

be applied “by hand” to the Green’s function, such that it
obeys the translational invariance of the physical lattice. The
periodized Green’s function G(k,w) depends only on one
wave vector k of the first Brillouin zone of the physical
lattice and therefore yields, per construction, a uniform par-
ticle density of the physical lattice. Nevertheless, it would be
desirable to obtain a particle density n(a) which is as flat as
possible even without Green’s function periodization. From
Fig. 6, second row, it can be observed that the particle den-
sity n(«) varies significantly with cluster lattice sites @ when
using the variational parameter sets Xx={u} and {u,z}. The
large deviations of n(a) from 1 for these parameter sets seem
to be related to the spurious gaps observed in the correspond-
ing spectral functions of Figs. 3(a) and 3(b). However, as
soon as & is introduced as variational parameter n(a) is in-
deed absolutely flat.

Alternatively to obc we consider pbc for the reference
Hamiltonian. The advantage of pbc is that the particle den-
sity n’(«) within the cluster is uniform. However, this does
not necessarily imply that the particle density n(«) obtained

from G(k,w) is flat as well, since the additional hopping
term between the boundary points of the cluster have to be
subtracted again in VCA via the matrix V, which again
breaks the translational symmetry. For reference systems
with pbc the variation in & appears less meaningful. There-
fore, we consider only the variational parameter sets X={u}
and {u,t}. Due to the pbc there are additional contributions
of the hopping over the cluster border which are not present
in the full system. This contribution has to be subtracted
using extra terms in the matrix V., see Eq. (6). As we did
throughout this paper, we consider here a one-dimensional
lattice to deduce the matrix V.. However, the results can be
readily extended to higher dimensions. The hopping matrices
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FIG. 7. (Color online) Phase boundaries of the first Mott lobe of
the 1D BH model. The reference system consists of clusters with
pbe. The variational parameters (a) X={u} and (b) x={u,s} are
used. The gray shaded area shows the DMRG results from Ref. 5.

of the full system T and of the reference system T, are
given by

(T)lj__t( ]+1+ +1/) (18)

and

( b(,)lj (Tphc)manﬁ— t5mn(5a,8+l+5a+lﬁ) (19)

where {i,j} are site indices in the physical system, {m,n}
label the clusters and {«, B} are site indices in the cluster. We
use pbc in the indices {i,j} and {«,B}, ie., {i,j}=N+1=1
and {a,B}=L+1=1. After a partial Fourier transform from
superlattice site indices m to wave vectors K of the first Bril-
louin zone of the superlattice, one obtains

(T =T )apK) = = (1= 1) (Supyr + Buar )+ (1= 167V 5,5,
+ (t - tei )5‘1L5B1 . (20)

In contrast to obc this matrix has an extra contribution of
—(¢t—=t")+t=t" at its top right and bottom left corner. The

whole matrix Vpbc(lZ) contains the variation of the chemical
potential as well and hence we have

(Vpbc)aﬁ(k) = (t=1")(Oapr1 + Far1p) = (L= 1) O

+ (t - te'ik)csa] 5BL + (l — teik) 501L5Bl . (21)

When treating clusters with pbc by means of VCA the re-
placement of the matrix V by V,,. is the only new aspect
which has to be considered apart from the fact that the solu-
tion of the cluster itself is different due to the pbc. The first
Mott lobe of the phase diagram for the variational parameter
sets Xx={u} and x={u,}, with a reference Hamiltonian with
pbc are shown in Fig. 7. Both Mott lobes coincide reason-
ably with the DMRG data. The phase boundary obtained
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FIG. 8. (Color online) Spectral function A(k, ) and density of
states N(w) for a 12 site cluster with pbc as reference system. The
parameters of the physical system are r=0.15 and w=0.35. The
corresponding variational parameter sets are (a) X={u} and (b) x

={u,1}.

from the {w,7} variation yields a very good agreement and
the problems which occurred for this parameter set for ref-
erence systems with obc are not present anymore. The qual-
ity x of the phase boundary calculated according to Eq. (17)
is stated in Table 1. From that it can be seen that the {u,1}
variation with pbc is comparable to the {u,,8} variation
with obc. The spectral function A(K, w) and the correspond-
ing density of states N(w) is shown in Fig. 8 for a 12 site
cluster and the parameters r=0.15 and ©=0.35. In the case of
pbc the spectral function and the density of states are not as
smooth as in the case of obc and x={u,t, 8} variation but
overall they exhibit the important features. The reason for
this is that for pbc there are more conservation laws and
therefore less states, so the states are less dense. The devia-
tion of the variational parameters with respect to the system
parameters is as demanded shrinking for increasing cluster
size, see Fig. 9 and 10. Next we investigate the particle den-
sity n(@) obtained from the not yet periodized Green’s func-

tion G(K, w). Results are shown in Fig. 11. Interestingly, for
a reference systems with pbc the density is less uniform than
for a reference system with obc which has an additional
boundary potential described by the variational parameter o.

Next we perform finite size scaling for the energy gap AL
Assuming a 1/L dependence (L is the cluster size) we esti-
mate the infinite-system gap A”. Notice that, in principle,
VCA provides the gap for an infinite system. However, due

0 ’\(M)/ 015/ |0 ®-D ®2 FIG. 9. (Color online) Differ-

\/ —L=4 0 ence between the variational pa-

-0.02 0.1} —L=8 rameters at the stationary point of
= = L=12 .

iy Xy 7 _-0.05 the grand potential and the param-

~0.04 0.05 eters of the physical system for

o Y reference systems with pbc. The

006 variational parameter sets (a.*) x

o 01 02 03 0 01 02 03 0 02 03

={u} and (b.*) x={u,} are used.
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FIG. 10. (Color online) Difference between the variational pa-
rameters at the stationary point of the grand potential and the pa-
rameters of the physical system for reference systems with pbc for
the hopping strength #=0.2 in dependence of the cluster size L. The
variational parameter sets are (a) X={u} and (b) x={u,}.

to the approximation, the gap displays a dependence on the
cluster size L, which should converge toward the exact value
for L—oo. In Fig. 12 we show the deviations of the gap A”
from the gap obtained from DMRG APMRG. QOne can observe
that in this case the best results are obtained for the param-
eter set X={u,7,8} and obc for the reference system. The
scaled results for reference systems with pbc are not as good
as the scaled results for reference systems with obc. At the
first sight it might be counterintuitive that the agreement be-
tween the VCA and DMRG results is good close to the lobe
tip. Yet, it should be noticed that the gap shrinks rapidly with
increasing hopping strength and that we show in Fig. 12 the
absolute error rather than the relative one.

We also compared the extrapolated VCA results with ex-
trapolated exact diagonalization (ED) results, where we used
systems with pbc of up to 12 lattice sites. The best VCA
results (for x={u, 8,1} and a reference system with obc) are
significantly superior to the best results obtained by extrapo-
lating the bare ED data. The discrepancy is particularly pro-
nounced deep in the Mott lobe for t=0.15.

In all spectral functions, regardless of the boundary con-
ditions, we observe additionally to the two pronounced co-
sinelike shaped bands centered around w—u=0 other bands
with little spectral weight located at higher energies.>> The
intensity and width of these bands increases with increasing
hopping strength ¢. In order to understand the additional
bands we apply first-order perturbation theory on the ground
state, where we consider the hopping term of the BH Hamil-

tonian, see Eq. (1) as perturbation, i.e., H,=— = J>b b;. The
ground state |¢0 ) of the unperturbed system with partlcle
density n is given by

25

e, t
2
215
fe

05 1 2 3 4 123456738 1 5 8 12
o o ol
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FIG. 11. (Color online) Particle density n(a) obtained from

G(Kk, w) for the parameters r=0.15 and u=0.35, and reference sys-
tems with pbc. The clusters are of size (a) L=4, (b) L=38, and (c)
L=12. The legend refers to the considered sets of variational
parameters.
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FIG. 12. (Color online) Deviations between the extrapolated
gaps A” (VCA) and the gap APMRG (DMRG), where (a) shows the
deviations for reference systems with obc and (b) for reference
systems with pbc. The dashed lines correspond to exact diagonal-
ization results for the gap extrapolated to infinitely large systems.

N
19y = & [n,,
v=1

which is a tensor product of the individual single-site bare
states |n). The energy of the bare states is Ej,y=Un(n—1)/2
—un. The first-order correction of the ground state describ-
ing quantum fluctuations is of the form

N

|n - 1>l’ ® |n>w (22)

v=1v#ll

t
|A1/zé“>:ﬁln+ 1), ®

where [ and [’ are nearest neighbors and AE=E}, )+ E),_y)
—2E),. The first-order correction |A is proportional to
the hopping strength 7, which reflects the fact that the inten-
sity of the additional bands increases with increasing hop-
ping strength.

In the first Mott lobe each lattice site is occupied by a
single particle, provided quantum fluctuations are neglected.
Hence, the additional particle in the particle part of the
Green’s function can move freely, see Fig. 13(a). This yields
the pronounced upper band of the spectral function located at
w—u=0.5. The cosinelike shape of the band is reminiscent
of the dispersion relation of free particles propagating on a
lattice. Equivalently, the hole, introduced in the hole part of

(a) (b)

© (d)

FIG. 13. (Color online) Small black dots indicate lattice sites
and big red dots particles. (a) single-particle term of the Green’s
function and (b) single-hole term of the Green’s function. In both
situations the additional particle/hole can move freely on the lattice.
(c) and (d), possible higher order excitations due to quantum fluc-
tuations in the ground state of the single-particle term of the
Green'’s function.
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FIG. 14. (Color online) Spectral functions, first row, and density
of states, second row, for (a) r=0.01,u=0.5, (b) r=0.03,=0.5,
and (c) r=0.05, ©=0.5. For the visualization we used a threshold of
0.1. The reference system consists of an L=12 site cluster with obc.

the Green’s function, gives rise to the pronounced lower
band, see Fig. 13(b). Considering quantum fluctuations in the
ground state, see Eq. (22), there are three energetically dis-
tinct excitations possible, namely, excitations from |n+ 1) to
[n+2), from |n) to [n+1) and from |n—1) to |n). Next we
evaluate the location of the bands arising from these excita-
tions. The first investigated situation corresponding to the
excitation from |n+1) to |n+2) yields for the location of the
band

n=1

511; = E\n+2> + E\n—l) + (N_ 2)E‘"> - NE‘”) = —ut 3U’
(23)

where we used n=1 for the first Mott lobe in the second step.
This situation, where one lattice site is occupied by three
particles, is sketched in Fig. 13(c). The second situation cor-
responding to the excitation from |n) to |n+1) results in

n=1

@ =2E|,1y+ Ejpy+ (N=3)E,y = NEy = — u+2U
(24)

and is sketched in Fig. 13(d). The third situation (excitation
from |n—1) to |n)) corresponds to Fig. 13(a) and therefore
contributes to the pronounced cosinelike shaped band located
at w—u=0.5. In the following, we compare the perturbative
results for the additional bands with the VCA results. Par-
ticularly, we evaluate spectral functions and densities of
states for the variational parameters X={p,, &}, the chemical
potential =05 and small hopping strength ¢
={0.01,0.03,0.05}, see Fig. 14. For small hopping strength ¢
the perturbative treatment is well suited. However, the quan-
tum fluctuations in the ground state, and thus the spectral
weight of the additional bands as well, are small, see Eq.
(22). In order to uncover the additional bands in the spectral
functions we introduce a threshold for the spectral weight,
i.e., the maximum value of the spectral function is restricted
to this threshold and all values larger than or equal to this
threshold are plotted in black color in the figures. This un-
veils bands with very low intensity. In all spectral functions

PHYSICAL REVIEW B 81, 235122 (2010)
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FIG. 15. (Color online) Comparison of the ground state energy
E, for hopping parameters corresponding to the first Mott lobe ob-
tained by means of VCA (dots connected by lines) and strong-
coupling perturbation theory (solid line). The lines connecting the
VCA results are guidance for the eyes. (a) directly compares the
ground state energy obtained from the two approaches and (b)
shows their difference.

shown in Fig. 14 an additional band located at w'~2.5 can
be observed. Furthermore a band located at w[z,z 1.5 is vis-
ible in Figs. 14(b) and 14(c). These bands match perfectly
well with the perturbative results 5}) and 6)127 of Egs. (23) and
(24), which are given by (511,=2.5 and 62:1.5, respectively,
where we employed a chemical potential x©=0.5 and used U
as unit of energy.

V. STATIC PROPERTIES

In this section, we benchmark the VCA results using the
ground state properties of the BH model. In particular we
investigate the ground state energy E, and the one-particle
density matrix C(|r;—rj)=(a/a;), which both have been
evaluated in Ref. 24 by means of a strong-coupling expan-
sion of 14th order. In VCA the ground state energy per lattice
site is obtained from the grand potential () evaluated at the
stationary point via the relation Ey=Q+nu, and the one-
particle density matrix C(|r;—r;|) is evaluated from the Fou-
rier transform of the momentum distribution n(K). As for the
spectral properties we obtain the best results for both the
ground state energy E; as well as the one-particle density
matrix C(|ri—rj|) when using the variational parameters X
={u.t, 8} and obc for the reference system. Therefore, from
now on we restrict the calculations to this set of variational
parameters and obc for the reference system, and evaluate
the convergence properties of VCA with respect to the size
of the reference system. In Fig. 15(a), we compare the VCA
results for the ground state energy E, for hopping parameters
corresponding to the first Mott lobe with the strong-coupling
results obtained from B. Damski ef al. in Ref. 24. We ob-
serve very good agreement between the two approaches. The
deviations of the VCA results from the perturbative results
are shown in Fig. 15(b). For the largest cluster of L=12 sites
the deviation is even less than 0.005 for all values of the
hopping strength ¢ corresponding to the first Mott lobe.

In Ref. 24 the one-particle density matrix for nearest
neighbors C(1), next nearest neighbors C(2) and next-next
nearest neighbors C(3) have been evaluated as a function of
the hopping strength ¢ by means of strong-coupling perturba-
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FIG. 16. (Color online) One-particle density matrix C(|r;—r;|)
for (a) nearest neighbors C(1), (b) next nearest neighbors C(2) and
(c) next-next-nearest neighbors C(3) obtained from VCA (dots con-
nected by lines) and strong-coupling perturbation theory (solid
line), respectively. (d) shows the dominating exponential drop-off
1/ of the one-particle density matrix for large enough distances in
dependence of the hopping strength # and the size of the reference
system. The inset shows an extract of 1/§ where the hopping
strength is restricted to 0.1=¢=0.3.

tion theory and the results have been compared with DMRG
data evaluated for an N=40 site system. For C(1) the strong-
coupling results compare well with DMRG up to the hopping
strength =0.3 and for C(2) and C(3) up to r=0.2. In Fig.
16 we compare our VCA results with the one-particle density
matrix of Ref. 24 and find good agreement within the above
mentioned regions of the hopping strength.

The one-particle density matrix decays exponentially for
large enough distances |ri—rj , 1.e.,

C(|r; —ry]) = e rmle) (25)

where ¢ is the correlation length and its inverse describes the
dominating exponential drop-off. The inverse of the correla-
tion length 1/&, shown in Fig. 16(d), is almost zero when
approaching the lobe tip which is already a precursor for the
superfluid phase where the correlation length diverges.

VI. CONCLUSIONS

In the present work, we benchmarked the variational clus-
ter approach by means of the one-dimensional Bose-Hubbard
model. In particular, we investigated the convergence prop-
erties of the variational cluster approach with respect to the
variational parameter space, cluster size and boundary con-
ditions of the reference system. For reference systems with
obc we introduced, additionally to the chemical potential
and the hopping strength 7, the variational parameter &,
which allows for a modified on-site energy at the boundary
of the cluster. Using the additional on-site energy o as varia-
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tional parameter drastically improves the results as it restores
to large extend the uniform particle density, which is violated
by the breakup of the physical system into decoupled clus-
ters. The resulting densities are essentially uniform, both that
of the reference system as well as that for the physical sys-
tem computed via the variational cluster approach Green’s
function without periodization.

At first we compared the variational cluster approach re-
sults for the phase boundary delimiting the first Mott lobe
with essentially exact density matrix renormalization group
data.> Especially accurate results for the phase boundary
have been obtained using the variational parameter set X
={u,t, 8} and reference systems with obc, and x={u,} and
reference systems with pbc. However, when extrapolating
the results to infinitely large clusters the x={w,7, 8} variation
with obc is superior to X={u,#} and pbc. Naively, one would
expect to obtain better results if additional variational param-
eters are introduced and with increasing cluster size. Both is
not generally true. For instance, augmenting the initial set of
parameters X={u} by the intra-cluster hopping parameter ¢’
worsens the results. Similarly, using the parameter set X
={u,} and increasing the cluster size leads to monotonically
increasing deviations from the exact results. This trend is
accompanied by an increasing deviation of ¢’ from the value
t of the physical system. This poses the problem as to how to
diagnose convergence toward the correct result, in cases
where the latter is not known. As an indication for correct
results one may look at the deviations of the variational pa-
rameters at the stationary point of the grand potential from
the physical system parameters. These deviations are ex-
pected to shrink with increasing cluster size as larger clusters
should better approximate the physical system. For X
={u,1} and obc, however, the above considerations are not
fulfilled and thus the poor results for the phase boundary can
be ascribed to the failure of the criteria on the deviations of
the variational parameters. In fact this criteria can be used to
test the variational cluster approach results. Interestingly, for
the x={u,} variation with obc we also observe increasing
deviations of the cluster particle density from uniform distri-
bution with increasing cluster size, which might indicate that
boundary states play an important role for this configuration.
Single particle spectral functions evaluated with x={u} and
{u,1} for reference systems with obc exhibit spurious gaps.’
These spurious gaps are not visible anymore if the additional
on-site energy ¢ is considered as variational parameter,
which is a very important improvement. Spectral functions
calculated for reference systems with pbc are not as smooth
as those evaluated for reference systems with obc, but overall
they exhibit the characteristic properties.

Second, we investigated the convergence properties of
static quantities, such as the ground state energy and the
one-particle density matrix. We compared our variational
cluster approach results obtained for various values of the
hopping strength ¢, corresponding to the first Mott lobe, with
results obtained by means of high-order strong-coupling per-
turbation theory.?* We investigated the convergence proper-
ties of the variational cluster approach using the variational
parameters X={u,, 6} and reference systems with obc, since
this configuration yields the best results for both the spectral
properties as well as the static properties. For the ground
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state energy we found excellent agreement between the
variational cluster approach results and the strong-coupling
results. Moreover the one-particle density matrix obtained by
means of the variational cluster approach matches very well
with the strong-coupling results, which are for next nearest
neighbors and next-next-nearest neighbors reliable for a hop-
ping strength 7=0.2. Finally, we evaluated the dominating
exponential decay of the one-particle density matrix, which
is the inverse correlation length. Close to the lobe tip the
exponential decay is almost zero, corresponding to an almost
infinitely large correlation length. This is already a precursor
for the superfluid phase.

In summary, the variational cluster approach yields accu-
rate results with relatively low computational effort for both
the phase boundary and the static properties of lattice bosons

PHYSICAL REVIEW B 81, 235122 (2010)

in one dimension, even at the tip of the first Mott lobe where
correlation effects are most pronounced.
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